
Conservative Reduced Order Modeling of the Plasma Kinetic Equations
Opal Issan 1 Oleksandr Koshkarov 2 Federico D. Halpern 3 Gian Luca Delzanno 2 Boris Krämer 1

1Department of Mechanical and Aerospace Engineering, University of California San Diego, USA

2T-5 Applied Mathematics and Plasma Physics Group, Los Alamos National Laboratory, USA

3General Atomics, San Diego, CA, USA

Abstract

Recent interest in spectral methods for fusion, space, and astrophysical plasma

simulations ⇒ noiseless (gyro-)kinetic simulations.

We propose a data-driven projection-based reduced-order model (ROM) to reduce the

computational cost of the spectral plasma solver (SPS) [1] of the Vlasov-Poisson

equations, describing the equations of motion of collisionless electrostatic plasma.

Contribution: ROM for the kinetic effects (higher order moments) in SPS while keeping

the macroscopic equations intact

⇒ preservation of fluid-kinetic property, conserves mass, momentum, and energy, and

efficiently handles convolutions.

Vlasov-Poisson equations

We consider the Vlasov-Poisson collisionless equations(
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The conserved quantities in a periodic spatial domain are
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and infinitely many more...

Spectral Plasma Solver [1]

Hermite-Fourier spectral expansion
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Velocity coordinate is projected onto the asymmetrically weighted Hermite basis ⇒ fast

convergence for near-Maxwellian plasma

ψn(ξs) = (π2nn!)−1
2Hn(ξs) exp

(
−(ξs)2) and ξs(v) = (v − us)/αs.

Spatial coordinate is projected onto the Fourier basis ⇒ spatial waves in periodic

domain.

Asymmetric Hermite approach possesses a simple correspondence between spectral

coefficients and fluid moments similar to Grad 1949 [2] ⇒ fluid-kinetic property.

Linear and quadratic invariants of the system can be conserved at the fully discrete

level using an implicit Gauss-Legendre temporal integrator.

We use closure by truncation Cs
Nv

(t) = 0 along with a (hyper) Lenard-Bernstein

collisional operator [3] to handle filamentation and numerical recurrence effects.

Fluid-kinetic proper orthogonal decomposition

The semi-discrete SPS Vlasov-Poisson equations in vector form can be written as
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where Cs
F (t) and Cs

K(t) are the fluid and kinetic state vectors of species s and N is a

convolution operator between the electric field and Hermite moments.

We assume there is a low-dimensional representation of the kinetic state vector
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r ∈ CNK×Nr, Nr � NK,

where Us
r is the POD basis. Galerkin projection applied to Eq. (2) yields the ROM kinetic

equation
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Arithmetic complexity: Cooley-Tukey FFT vs. Kronecker product

FOM operation algebraic term arithmetic complexity
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nonlinear acceleration Bs
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total evaluation Eq. (2) O(NK log2(Nx,t))

ROM operation algebraic term arithmetic complexity
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Test 1: weak Landau damping

Training parametric simulations Nv = 100, Nx = 20,∆t = 0.01 with 11 samples of αe

Extrapolation: ROM prediction for thermal velocity αe = 0.9

M = 3 and NK = 3, 977 M = 4 and NK = 3, 936

Test 2: bump-on-tail instability

Training parametric simulations Nv = 250, Nx = 50,∆t = 0.01 with 4 samples of ue2

Interpolation: ROM prediction for bump bulk speed ue2 = 4.5

FOM with NK = 24, 947 ROM with Nr = 100 ROM with Nr = 300

How are the macroscopic quantities affected?

bulk density bump density

Conclusions

Benchmark cases verify the properties of the proposed fluid-kinetic ROM approach

X Mass/momentum/energy conservation to machine precision

X Efficiently handling convolutions in reduced dimensions via Kronecker products

× Accurate predictions in nonlinear regimes (e.g. bump-on-tail t > 20) needs further
investigation
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