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Abstract

Recent interest in spectral methods for fusion and astrophysical plasma simulations ⇒
noiseless (gyro-)kinetic simulations.

We propose a symmetrically weighted Hermite spectral (in velocity) and central finite

difference (in space) discretization that preserves the anti-symmetric structure of the

advection operator in the 1D1V Vlasov equation ⇒ unconditionally stable numerical

method.

We apply such discretization to two formulations: the canonical Vlasov-Poisson

equations and their continuously transformed square-root representation ⇒
square-root preserves the positivity of the particle distribution function.

Vlasov-Poisson equations

As a starting point, we consider the Vlasov-Poisson collisionless equations(
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f s(x, v, t) = 0 and ∂E(x, t)

∂x
=
∑
s

qs
∫
f s(x, v, t)dv.

The conserved quantities in a periodic spatial domain are

N s(t) =
∫ ∫

f s(x, v, t)dvdx (mass)

P(t) =
∑
s

ms

∫ ∫
vf s(x, v, t)dvdx (momentum)
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∫ ∫
v2f s(x, v, t)dvdx (energy)

Lp(t) =
∫ ∫

(f s(x, v, t))pdvdx (Lp norm)

and more...

Anti-symmetric Hermite spectral moments [1]

Expansion of f s

f s(x, v, t) ≈
Nv−1∑
n=0

Cs
n(x, t)ψn(ξs),

Expansion of
√
f s√

f s(x, v, t) ≈
Nv−1∑
n=0

Cs
n(x, t)ψn(ξs).

The velocity coordinate is projected onto the symmetrically weighted Hermite basis

ψn(ξs) = (
√
π2nn!)−1

2Hn(ξs) exp
(
−(ξs)2/2

)
and ξs(v) = (v − us)/αs.

The spatial coordinate is discretized via central finite differencing ⇒ anti-symmetric

derivative operator Dx = −D>
x .

Both the f s and
√
f s formulations result in the same discretized system with

different conservation properties.

The anti-symmetric approach does not possess a simple correspondence between

spectral coefficients and fluid moments as Grad 1949 [3] or the asymmetrically

weighted Hermite spectral approach [4].

Linear and quadratic invariants of the system can be conserved at the fully discrete

level using an implicit Gauss-Legendre temporal integrator.

Closure by truncation Cs
Nv

(x, t) = 0 is the most appropriate conservative closure for

the f s formulation [2].

Why is it important to preserve anti-symmetry?

An anti-symmetric operator A = −A> conserves square norms since

φ>Aφ = −φ>Aφ = 0
Vlasov advection can be expressed in anti-symmetric form

∂

∂t
f s(x, v, t) = As(x, v, t)f s(x, v, t) ⇒ As(x, v, t) = −v ∂

∂x
− qs

ms
E(x, t) ∂

∂v
There is an equivalent advection operator in discrete form

d
dt

Ψs(t) = As(t)Ψ(t) ⇒ As(t) = −V ⊗ Dx − qs

ms
E(t) ⊗ Dv

An anti-symmetric

structure-preserving discretization

is unconditionally stable and

renders explicit temporal

integrators approximately

time-reversible [1].

Linear Landau damping with RK3

Numerical properties of f s vs.
√
f s

f s
√
f s

conservation of mass if Nv is odd 3

conservation of momentum if Nv is even & us = 0,∀s 7

conservation of energy if Nv is odd & us = 0,∀s 7

positivity preserving 7 3

unconditionally stable 3 3

Nonlinear Landau damping

f s with Nv = Nx = 101
√
f s with Nv = Nx = 101

Bump-on-tail instability

f s with Nv = 100 & Nx = 101
√
f s with Nv = 100 & Nx = 101

Conclusions

Benchmark cases verify properties of the anti-symmetric approach

X (
√
f s)2 and (f s)2 are quadratic invariant of the discrete system

⇒ unconditionally stable numerical scheme

X Mass/momentum/energy conservation to machine precision depending on Nv and

us for f s formulation

X Mass conservation to machine precision for
√
f s formulation

× Manageable momentum and energy drifts

Future work avenues

(1) Develop techniques to mitigate filamentation while maintaining conservation

(2) Adaptivity in time and space of the Hermite parameters us and αs
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