DMD Autoencoder
The figure above illustrates the simple DMD autoencoder architecture. The input time sequential dataset X is passed to the encoder which is a nonlinear mapping g. The encoder output is called the latent space y_{k} = g(x_{k}). The latent space Y is predicted by the Dynamic Mode Decomposition, \tilde y_{k+1} = A^{k}y_{0}. Both the latent space Y and predicted latent space \tilde{Y} are passed to the decoder g^{-1}. Lastly, the decoder outputs g^{-1}(Y) and g^{-1}(\tilde{Y}).
Important subroutines:
-
dmd_machine/autoencoder_network.py
- The Autoencoder network is a Keras sequential model. -
dmd_machine/dmd_ae_machine.py
- The DMD Autoencoder, computes the predicted latent \tilde{Y} by the dynamic mode decomposition algorithm.